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Abstract

In this communication, we propose a fully automated vision system to monitor the

germination and elongation of seedlings positioned in a petri dish. While most existing

systems use agar gel as transparent nutritive medium imaged in backlight, we demon-

strate that although it provides a reduced contrast, not fully opaque paper can serve as ef-

ficient lower-cost medium preventing the well-known problem of seedling joining during

elongation. Automatic tracking of elongating seedlings is realized with a minimal path

algorithm. The three organs (radicle, hypocotyl, and cotyledon) are then segmented. Val-

idation of the accuracy of the system is provided on sugar beet seedling by comparison

with the expert-based ground truth.

1 Plant phenotyping problem and related work
Seedling heterotrophic growth is a crucial stage of the development of plants [19] occuring

before the activation of the photosynthetis process (autotrophic growth). After sowing, two

successive stages have to occur starting with germination until the radicle protrudes out of

the seed coat and then the heterotrophic growth in the soil until the seedling emerges out of

the soil. In field conditions, germination and heterotrophic seedling growth stages are not
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easily observable since they occur in the soil. As a consequence, diagnosis on sources of

seedling emergence failure is difficult, especially the separation of the respective impacts of

the two stages in sowing failures. Non-invasive monitoring of seedling growth is accessi-

ble in laboratory conditions with computer vision machines. A common imaging system,

reported in [1, 2, 5, 6, 7, 10, 11, 12, 18, 21] with various levels of automation, consists in

monitoring a set of seedlings positioned on a row in a vertically settled box with agar gel.

A backlight system associated with a camera then produces sequences of images of seedling

during growth. From such image sequences, the temporal evolution of the length of the

seedling is measurable with classical image processing such as binary image skeletonisa-

tion.

A limiting factor when considering the whole process of plant preparation and imaging is

the use of agar gel as nutritive medium for the seedlings. Agar gel is convenient for imag-

ing seedlings in backlight because it is a transparent medium. However some defaults (air

bubbles, scratches, development of pathogens,...) can occur during the preparation of the

gel as reported in [4, 18]. These defaults can perturb the quality of the image processing.

Even more important, the preparation of the agar gel medium takes time (several hours) and

actually represents a, if not the, bottleneck in the monitoring of seedling growth. Last but

not least, agar gel leaves the seedling free to move on its surface and it happens from our em-

pirical expertise that very often the seedlings emerging from neighboring seeds tend to join.

While some image processing based separation has been developed for crossing seedlings

[3], the separation of joining seedlings seems like a very ill-defined problem.

In this work, we propose to use another nutritive medium, cheaper, faster to prepare and that

happened to reduce this seedling joining problem. We use a simple non opaque paper as

introduced in [14] for single root systems. Because the paper somehow fixes the seedling

on the petri dish, the seedling joining is avoided in the presence of multiple seedlings also

for the same mechanical reasons movement of hypocotyl and cotyledon are prevented when

compared to the freedom to move that seedling have in agar gel. Paper has been used as

background earlier [8, 9] in front light and top view with seedlings put at horizontal. In our

case the seedling are vertical and the paper is sticking the seedlings to the petri dish. In

such conditions, back light provides better contrast than front light. However, although not

opaque, the paper reduces the contrast in the acquired images by comparison with the usual

agar gel. However, although not opaque, the paper reduces the contrast in the acquired im-

ages. The Fisher ratio between background and seedling is found 80.51 for paper while it is

found at 558.90 for agar gel. Also, due to mechanical deformation associated with the drying

process of the paper and the growth of the seedling, some stripes similar to seedling in terms

of size and contrast appear in the image. Figure 1 shows a schematic view of the classical

method using agar gel and the faster method using simple wet paper. After some preliminary

test (not presented in this short communication) of the available methods of the literature,

we identified the need to adapt the image processing tools. Indeed most of the current work

monitors root systems during the autotrophic growth [1, 2, 6, 7, 10, 11, 12, 18, 21] while

as stressed in [5] there is also biological interest in monitoring the heterotrophic growth. To

deal with the specific anatomical organs visible during heterotrophic growth and the low-

contrasted and cluttered images, we propose a computer vision algorithm presented in the

following section which aims at tracking and segmenting each organ (radicle, hypocotyl and

cotyledon) of a seedling as shown in Fig. 2.
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Figure 1: The imaging system with simple paper used in this report compared with the usual

longer to prepare agar gel as support. The LED light is a back light considered for a petri

dish, and camera is capturing images from front side of a petri dish.

Figure 2: Overview of the segmentation of the three seedling organs.

2 Computer vision approach

Dry seedlings are positioned on a wet paper inside a petri dish imaged with a 2050 pixels

by 2448 pixels camera. The lighting is backlight with an inactinic LED [5]. Images are

acquired at a frame rate of 1 image every 240 minutes (min) during 464 hours over 18 days.

For illustration, as shown in Fig.3 with sugar beet seeds, this produces sequences of images

with rather low contrast specially at the root tip.

2.1 Image processing

As shown in Fig. 4 the automatic vision system for tracking growth of seedlings and de-

tecting each organ consists in several steps starting at seed detection up to organs length

measurements. Each step is described separately in the following sub-sections.
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(a) (b) (c) (d)

Figure 3: Four gray level images of seedlings of suger beet during the elongation phase, from

(a) to (d), acquired at the time of t = 0 min , t = 5040 min, t = 17040 min, t = 28080 min

using our imaging system.

Figure 4: Block diagram of the automatic vision system.

2.1.1 Seed and germination detection

Figure 5 shows our pipeline of seed and germination detection process. In the beginning, a

pre-processing step is considered on all images in a sequence. In this step, frame borders are

cropped and seeds and seedlings with a background are kept for further analyses. A simple

Otsu threshold [15] is applied to the first image (t = 0 min) in order to segment seeds (before

germination) from background. The Otsu thresholding can be efficient as the contrast of

seeds is good enough for a segmentation. Then the initial center coordinates of each seed are

recorded to use for germination detection step. Figure 6 shows a sample of seeds detection

at the first image (t = 0 min) of each sequence.

At the second step, we find the time of germination (the area where the radicle and

hypocotyl pop out of the seed) of each seed. The germination time in a sequence can be

detected by measuring the movement of the initial center of the seed in a way that the Eu-

clidean distance dg of the movement of the center of the seed at the time of t = 0 min and
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Figure 5: Flowchart of germination detection approach.

Figure 6: Output image after the first step.

t = n min is measured by equation

dg =

√(
xst=0

− xst=n

)2
+
(
yst=0

− yst=n

)2
(1)

where distance dg is a simple Euclidean distance, (xst=0
,yst=0

) are the initial center’s coor-

dinates of each seed and (xst=n ,yst=n) of are the center’s coordinates at the time of n of the

correspondent seed. A seed is germinated if the distance passes a specific threshold. With the

time step of 240 minutes used in our experiment, a threshold of thr = 2 pixels is empirically

chosen for an efficient detection of germination.

The next step after germination detection is to specify the location of the germination area

G = {g1x,y ,g2x,y , ...,gnx,y} where gix,y are pixels belonging to the germination area. This is

achievable by simply subtracting the image at the time of germination t = n from the last

image before germination t = n− 240. This subtraction removes all seed areas except ger-

mination area plus small points (noises) at the borders of the seed. These small noises can

easily be removed by keeping the biggest connected component as the germination area

G = max(Ci) where Ci represent the size (number of pixels) of connected components. Fig-

ure 7 shows three examples of this step for detecting germination area.

As shown in [5], a gravitropism prior enables to use this germination area to fix the sep-

aration between the radicle which grows down and the hypocotyl which grows up. In order

to specify a specific point (pixel) as the separation point between radicle and hypocotyl , the

central pixel of G is selected and recorded as the germination point gsx,y .
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Figure 7: Examples of the detection of germination coordinates.

2.1.2 Seedling tracking

As a pre-step here, a specific patch is considered around each seed/seedling based on its

location in each frame of the sequence and all pixels out of this patch are removed to make

sure that additional noises can not disturb the tracking of seedlings. In order to track the

growth of seedlings, a minimal path algorithm [20] is adopted and applied on each seedling

separately. Considering a starting point and ending point in a shape H, the minimal path is

a geodesic [13] between these two points. Its extraction can be seen as a front propagation

problem [16] from one point to the other. The distance transform maps each image pixel into

its smallest distance to regions of interest [17]. Tracing the distance map from a specified

point to a referred one will give a geodesic between these two points. To force the geodesic

to be near the centerline of each organ, a weighted distance map WDT related to the grey

level of each organ is computed. Let H be the studied greyscale organ, H(a) the normalized

intensity at pixel a ∈ H. The WDT of H is given by:

WDT (a) = DT (a)× e−η×H(a)2

(2)

with DT (a) = min
p∈S

((d(p,a))) where d() is the Euclidian distance and η represents a weight-

ing coefficient which is empirically chosen for each image.

The set of maximal geodesics is extracted as follow: we propagate a front within each organ

from germination point gs(x,y) , and locate the maxima Ei = max(WDT (gs(x,y) )). A geodesic

Pathi is built considering gs(x,y) (as a starting point for both radicle and hypocotyl) and ending

point Ei = {E1,E2} where E1 is the ending points of radicle and E2 represents the ending

points of hypocotyl. In order to detect these ending points, the Otsu threshold technique is

applied in each seedlings to segment the whole shape of them, then pixels with the lowest and

the highest positions in a vertical direction are considered as E1 and E2 respectively. Then

Pathi subtracted from the shape R = HDilB(Pathi) where DilB(Pathi) is the morphological

dilation operation and B a disk of radius b corresponding to the observed shape width. If R
is empty, the process is stopped. This means that the set of the extracted maximal geodesics

(here Pathi) covers the entire organs. If R is not empty (which means the cotyledon is ap-

peared), maximal geodesics are iteratively extracted from the remaining organ. Pathi+1 is

then computed from the remaining shape R.

It should be mentioned that the seed corresponding to each seedling is removed (called as

the seed removing process) before calculating of Pathi as the contrast of the seed is much

higher than its seedling and the minimal path always passes through the seed.
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2.1.3 Organ segmentation

At the end of the tracking process, three paths are extracted as Pathi = {Path1,Path2,Path3}.

These paths enable us to segment the different organs of a seedlings based on biological

knowledge as radicle and hypocotyl are connected on the germination point. The hypocotyl

organ is segmented by the path between gs(x,y) and E2 which is shown as Path2. Similarly

Path1 which is the path between gs(x,y) and E1 is used to segment the radicle organ. As the

cotyledon is located in the continuity of the hypocotyl at the top part of a seedling, Path3 is

considered as the path for the cotyledon of a seedling.

3 Results

At the end of the process of tracking and segmentation, two reports followed by four curves

are generated for each series of seedling sequences which can be used for further analysis

such as growth rate, germination time, etc. The first report consists of the germination time

of each seed and the length of each organ after three, seven, and fourteen days after ger-

mination in pixels and millimeter (mm). This report can also point an anomaly during the

seedlings growth such as late germination (even no germination), or any crossing between

two seedlings or fusion of two or more seedlings. The second report consists of the length

of each organ during their growth based on tracking results of each image in a sequence.

This report can give the required information to analyze the growth behavior of seedlings at

any time of their growth. Based on this report three curves of the growth behavior of each

organ over the time plus a curve of the growth behavior of all organs together (total seedling

length) are produced as shown in Fig. 8.

Figure 8: Length (in pixels) of each organ of 10 seedlings in one capturing series over the

time (× 240 min ). Top left curves show the length of radicles, top right curves illustrate the

length of hypocotyl, and the bottom center one represents the length of cotyledon.
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3.1 Validation
In order to validate the algorithm presented in this communication, a comparison with man-

ual measurements of organs has been done. This validation has been done on four series

of captured images where each captured series consists of a sequence of 117 images of 10

seeds. In total, the growth length of 40 seedlings is used to estimate the accuracy of the

algorithm. The first comparison is done on the germination time. The results show that the

automatically estimated germination is well-correlated to the manual detection in Fig. 9 with

a small underestimation though since the slope of the curve is slightly below 1.

Figure 9: Comparison of germination time (in minutes) between manual detection and the

algorithm detection for all seeds.

In order to validate the length measurement accuracy of the algorithm as well, the length

of radicle, hypocotyl and cotyledon of all 40 seedlings 14 days after germination have been

measured in millimeter by both our algorithm and manually. The experimental results at

Fig. 10(a) shows that except one radicle with the maximum difference of 14mm between

two different measurements, the rest of radicles have a different length of less than 2mm on

an average. Figures 10(b) and 10(c) show that except for seedling number 20 measurements

are very close to the manual measurement.

As a limitation of the algorithm (it is shown in figure 10 as well), rarely there are big

differences between manual and automatic measurement such as radicle 28, or hypocotyl

20. Theses differences caused by some limitation on the algorithm. For example, there is a

seed movement at the seedling number 20 (which the algorithm is not able to detect it yet),

so due to seed removing process, some parts of the seedling will be eliminated at the center

of the seedling which makes it difficult for the algorithm to track the growth of the seedling.

Figure 11 shows an example of this problem. In this version of the algorithm, these type

of seedlings are reported as abnormal seedlings but in the future work, a seed movement

detection will be added to the algorithm to avoid these problems.

4 Conclusion
We have demonstrated the possibility to efficiently perform organ segmentation and track-

ing in sequences of images of seedling elongation while using a simple wet paper support

much faster to prepare than the common approach based on agar gel. The approach, which

constitutes a possible very valuable improvement and reduction cost, is based on the use

of a minimal path tracking algorithm on multiple seedlings put in a petri dish during het-

erotrophic growth and under inactinic backlight. This can be considered as an extension of
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(a) (b)

(c)

Figure 10: a,b, and c shows a comparison of the length (in mm) of radicle, hypocotyl, and

cotyledon respectively between manual detection and automated detection for all seeds.

Figure 11: Elimination of the central part of a seedling during the seed removing process .

recently related propositions to use cheaper nutritive medium than agar gel in plant computer

vision including opaque wet blotter [6] in front light or paper [14] during a different stage

of development of the seedling (autotrophic growth). Perspectives of this preliminary work

include on the experimental part the comparative investigation of the various media (agar

gel, wet blotter, wet paper) in terms of germination dynamics with various species. Also,

on the computer vision part, we envision to open a challenge on our low contrast images to

allow the comparison in terms of measuring accuracy and computation time on alternative

solutions.
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