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Abstract

The paper presents a technology for plant growth dynamics estimation in an artificial
soilless system. The approach consists of a hardware setup for automated image acqui-
sition, plant feeding system, conditional monitoring and a software for automatic leaves
segmentation and tracking. The software part of the system relies on a convolution neu-
ral network for instance segmentation. To train the neural network a manually annotated
dataset was made.

We conducted experiments on salad. Observations were taken for 31 days with the
fixed time frame of 30 minutes, resulting in a large image dataset for each plant. It was
shown how obtained results on instance segmentation for a particular leaf can serve for
detailed reconstruction of the dynamics of plant growth.

Datasets and source code are publicly available:
https://github.com/DmitriiShadrin/PlantGrowthDynamics.

1 Introduction

Precision agriculture attracts more and more latest computation, data-intensive and engi-
neering solutions. As computational capabilities are increasing and application of modern
robust mathematical algorithms becomes readily available, it becomes beneficial to use them
in precision agriculture. Plant phenotyping by using of an image-based approach opens a
wide avenue for automation analysis of increasing variety of plant cultivates. However, it
is one of the most challenging tasks in the area and gives us huge benefits in automation of
processes and plant function description. Using image-based approach gives us a possibility
to avoid a huge amount of empirical and heterogeneous data, parameters and models that
describe plant growth dynamics which is essential for making predictive and control mod-
els for growth conditions. Also, the number of different plants species are increasing very
rapidly and it is almost impossible to perform comprehensive analyses of each for develop-
ment of a strict mathematical model that describes it growth under different conditions. The
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capabilities of computer vision systems go beyond the limited abilities of humans to eval-
uate long-term processes, as an example by continuous plant monitoring and phenotyping
it is possible to recognise hidden dynamics in plant growth and this additional information
can serve as a very useful tool for future optimisation of plant growth. Having an anno-
tated dataset which has typical annotations such as leaf masks, bounding boxes as well as
reference to the regular time frame is crucial for solving such type of tasks. In this paper
data set was obtained by using of a hydroponic system for plant growth and it can serve as
a good inspiration for how image-based phenotype can be used for in-situ optimisation of
plant growth in such closed artificial systems, which is possible to be as a basis for food
production in the nearest future.

2 Related work

2.1 Artificial soilless systems

Usage of artificial soilless systems for conducting studies on plant growth is in high demand
due to the possibility of full control of environmental conditions. The other advantage is that
such systems also can be used for root phenomics studies [23], which can be coupled with
image-based technologies [13]. Artificial soilless systems also widely used in the industry
and design of them becomes more and more complicated and productivity of these systems
was increased during last years [24],[5], [27], [29]. This became possible due to the wide
implementation of optimisation technologies in this industry. Such systems proposed in [16],
[15], [17], [42]. In-situ image analysis is very popular and well developed for monitoring and
diagnosing large-scale crop fields aimed at optimisation of resources consumption [43],[1],
[7]. For greenhouses and indoor farming image-based technologies started to implement re-
cently [19], [8]. However, automotive small-scale monitoring and dynamics diagnosing of
each plant or each leaf can bring optimisation technologies for greenhouses to a new level
[41]. Study of the plant growth dynamics responses to the environment [12] is a key com-
ponent for improvement of combined image-based and dynamic controlled closed artificial
systems. Knowing the plant structure and function in an automotive manner by image pro-
cessing allow to perform predictive analysis and create recommendation models for growing
plant in the best possible conditions in certain resources constraints [11].

2.2 Leaves instance segmentation

There are lots of reviews that describe the development and application of image-based tech-
nologies for doing analyses of plant structure and function presented in the literature. A col-
lation study of image-based plant phenotyping by an implementation of leaf segmentation
was proposed by Sharr et al. [34], more generally possible areas application of convolutional
neural networks (CNNGs), that are commonly used for plant phenotyping, are described in Gu
et al. [14]. On the basis of each developed computer vision algorithm evaluation lies good
quality annotated database. The most popular the first comprehensive benchmark data that
can be used for typical computer vision tasks was obtained by Minervini et al. [21] and Cruz
et al. [3]. Previously obtained datasets that can serve for solving of a smaller range of com-
puter vision problems described in Silva ef al. [36] and Nilsback ef al. [26]. High demand on
benchmark data can be reflected in the big number of their usage. For example, open-source
dataset [21] was used for evaluating precise recurrent instance segmentation algorithm de-
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veloped by Romera et al. [31] or by Ren et al. [30] in which it was proposed end-to-end
RNN architecture with an attention mechanism. In [4] an instance embedding approach was
proposed; pixels of an object are encoded into vectors and clustered using popular mean-shift
algorithm.

As the process of annotated dataset preparation is time-consuming and not always pre-
cise, for example, it takes a long time to do leaf masking, computer-generated models or
so-called synthetic plants proposed in Giuffrida ef al. [10] and Ubbens et al. [37] can help to
overcome this problem. For sure it is very attractive to process 3D images of plant growth
as we can derive more information about plant structure compare to 2D images, but systems
for receiving precise 3D imaging data are typically on several orders of magnitude more ex-
pensive than 2D imaging systems. 3D phenotyping platform for laboratory experiments was
successfully developed and 3D dataset with environmental information was obtained in one
of the most recent works [38]. Different approaches for 3D plant reconstruction described
in [9], [20], [28], [40], and [2]. Obtaining high-quality image and data associated with plant
growth is highly relevant for training machine learning algorithms, thus affordable hardware
and software setup for plant phenotyping is in high demand. One of the proposed system
with such features presented in Minervini et al. [22] that is equipped with the possibility for
leaf area counting based on robust machine learning algorithm. The other one [6] can per-
form time resolved analyses of plant growth which is also essential for understanding growth
phenotypes.

3 Methods

3.1 Experimental setup

As an experimental setup for growing plants, we designed an assembled hydroponic system
based on constant feeding layer technology (NFT). This type of systems showed its’ reliabil-
ity and used worldwide for plants cultivation. In our system, it is possible to grow up to 20
medium size plants in 1> (salad or dwarf tomatoes as an example) in 0.65 1 (10x10x6,5¢m)
rock wool blocks that we used as a substrate. Constant - 1.5 cm. feeding layer was main-
tained by recirculating of feeding solution that was performed by 10 Watt pump and 60-liter
tank. We used 150 Wart multispectral light emitting diodes (LED) as LEDs’ are compact it
is much easier to control them during the experiment compare to other types of plant illu-
mination. Performed calculations showed that intensity and spectrum of light and recycling
rate (1-2 full recycling of fertiliser per hour) fits the optimal requirements for the common
systems of this type. Feeding solution was prepared by using the recommended recipe of
popular commercial fertiliser concentrate Flora NOVA produced by company GHE. For our
particular system period from germination to the end of vegetation for salad is approximately
one month. The summary of the system design showed in Table 1. We decided to use the
artificial soilless system as it is much easier to maintain all necessary growth parameters in
the certain optimal range, thus we can overcome perception-action problems that typically
occur when plants are grown traditionally - in the soil. This becomes possible because plant
roots are in direct contact with fast recycling feeding solution, the composition of which we
can easily control in combination with the second important factor - light. Altogether these
lead to fast system response and allow to provide conditions that we need for correct setup
of the particular experiment for receiving good quality data. The hydroponic system with
image acquisition system is shown in Figure 1a.
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| Feature \ Value/description \
Max. amount of plants 20
Ilumination 150 Watt multispectral LED
Feeding solution recycle | 60 liter tank, 10 Watt pump and 1.5 cm of feeding layer
Substrate 0.65 liter rock wool blocks
Fertiliser Flora NOVA produced by GHE

Table 1: System hardware design summary
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Figure 1: (a) Hydroponics system and hardware setup; (b) relations among subsystems

Camera

3.2 Image and data collection system

XY plotter MakeBlock was assembled and adapted for automotive obtaining raw images of
plants. Camera Logitech c920 was mounted in the working place of the plotter. This design
allowed us to take top-down colour photos of each plant by moving the camera in a 2D plane.
This approach gave us such benefits as that is was possible to take high-resolution image of
each plant separately without shadowing of plants for a long time and also there is no need to
perform angle corrections of camera view. The experimental setup was equipped with sen-
sors such as: pH, humidity, electrical conductivity, air and solution temperature, recycling
rate of solution. These sensors continuously measured environmental and system parameters
and measurements were recorded concurrently along with images to a database each 30-ty
minutes. Additional white LEDs were mounted around the digital camera for providing as
equal as possible illumination conditions for taking photos. Sensors were calibrated and
several tests were performed before launching continuous long-term experiment for dataset
collection. The LED system was controlled and had a duty cycle 18h/6h (day/night) at
the beginning of the experiment and by the end of the experiment, duty cycle was slightly
decreased to 16h/8h (day/night). It is very important to monitor conditions during the ex-
periment, thus custom user-friendly web-interface for monitoring growth conditions was
developed. Hardware control and data-receiving sensors was synchronised, also such fea-
tures as plotter auto-calibration and automotive relaunching of the system were developed
as planned experiments are long-term and interruption of it could make all the received data
useless. Simplified relations among experimental subsystems demonstrated in Figure Ib.
We successfully performed the continuous one-month experiment in which we collected im-
age and environment parameters dataset. The experiment was on growing 9 salad plants.
All the condition parameters were maintained in the optimal range during this experiment.



SHADRIN, KULIKOV, FEDOROV: INSTANCE SEGMENTATION, DYNAMICS ASSESSMENT 5

. ®

'’ e ) ‘e ¢ .

Figure 2: Examples of salad images at different growth stages with corresponding leaf
masks; the pictures are taken from manually annotated data set.

Totally, during the experiment with salad it was obtained 8541 raw images. Not all of the
images were included into the dataset for solving machine vision problems as by the end of
the experiment almost all of the plants outgrew and were out of a field of view and had too
complicated structure of overlapped leaves.

3.3 Annotated dataset

The system, described in Section 3.1 allowed us to collect the dataset of raw top-down
images of plants which were further labelled plants images that is perfect suits for test-
ing semantic and instance segmentation algorithms for phenotype and also opens a wide
vista for other types of computer vision tasks. Public available https://github.com/
DmitriiShadrin/PlantGrowthDynamics dataset includes 4815 raw salad images
for the period of 11 days growth after germination and 75 carefully manually annotated
image data. All this data has the time reference that gives a possibility for plant growth
dynamics assessment. For these images leaves masks and leaves bounding boxes were ex-
tracted manually by using online labelling tool LabelMe [33]. Figure 2 shows examples of
images from the dataset with corresponding leaf masks (bounding boxes were included in
the dataset, but are not represented in Figure 2 as the image will be confusing). Totally, 356
leaf masks and bounding boxes were obtained. The dataset contains both: relatively simple
annotated images - 62 with three instances, 47 with four instances, and really complicated -
eight images with rich structure and 10 instances. By now we annotated 75 images as it was
enough for training instance segmentation model, but the amount of annotated images will
be increased by our working group in time.

3.4 Image processing

The estimation of individual leaf growth dynamics, requires separation between leaf in-
stances on the image. In order to solve this task we have used Deep Coloring method [18].
Deep Coloring reduces instance segmentation to the task of pixel classification (coloring).
The latter task can be accomplished using almost any of the recently developed deep con-
volutional architectures for semantic segmentation. In this work we have used U-net [32] as
semantic segmentation backbone.
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Simply speaking, this method enforces all pixels of the same object to take the same
color, while also enforcing pixels belonging to different but adjacent object instances to take
different colors. The example of output of this method is depicted in Figure 3 (top). A simple
component analysis allows to extract individual leaves on the image.

To train instance segmentation network we have used the annotated dataset described in
section 3.3. The training set was split into two parts: training and test set, 65 and ten image
respectively. The training set was augmented with random crops, rotations, flips and scaling.
Other training parameter were taken from [18].The instance segmentation accuracy, achieved
on our test set was 0.74 symmetric best Dice coefficient (SBD) (c.f. [34]). This score is
slightly worst that the score of [18] on CVPPP Al dataset, were the instance segmentation
method achieves 0.80 SBD.

The instance segmentation algorithm produces labels for instances independently for
each image and they may differ between sequential frames. In order to estimate the leaf
growth dynamics we have implemented a post-processing step, that tracks labels and makes
sure that each instance will have with same index for the whole sequence. For each sequen-
tial pair of labeled images we solve the linear assessment problem [25] based on the inverted
pairwise intersection over union between instance. Linear assessment provides us correspon-
dences between labels, the labels on the second frame are modified to match the labels from
the first frame. To make this procedure more stable, over-segmented images were removed
from the each sequence.

We have parametrised the leaves growth dynamics according to the model proposed in
[39], [35]:

N
Simax + S()(el“” - 1) ’
where Sy, and Sp are constant and set to 100cm? and 0.1c¢m? respectively according to [39],

U is the estimated parameter, that can be used to compare growth dynamics between plants.
That model shows the correspondence between size of the leaves and time.

S(t) :Smax* (1)

Plant sample | Growth rate of 3-rd leaf cm?/day | Growth rate of 4-th leaf cm?/day ‘

1 0.57 0.77
2 0.61 0.75
3 0.60 0.80
4 0.61 1.00
5 0.62 -
6 0.61 0.86
7 0.59 0.94
8 - i
9 0.57 0.93
0.5974+0.018
Table 2: Growth rate estimation
4 Results

We reconstructed dynamics of growth for each plant in the experiment, described in Section
3.1 for the period of 11 days after germination. For each image, the instance segmentation
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Figure 3: Results of dynamics reconstruction. Dotted lines depicted the fitted growth model
for third and fourth leaves. Pictures above represents raw salad images with segmented leaf
instances masks by instance recognition; the images approximately correspond to the graph
time frame

network was applied provided with detailed masks of individual leaves Figure 3 (top). Each
leaf instance was tracked thought all time sequence providing information about its size in
pixels. In order to convert the size to real-world units a calibration objects (red square of size
1 x 1cm) was used.

Observed growth dynamics is presented in Figure 3 (bottom), where we can observe
the exponential growth of third and fourth leaves. first and second leaves that appeared in
the beginning grew up to lcm? and than size remained stable for all investigated plants.
This is happened due to physiological reasons in plant function. For almost all plants we
received similar and feasible growth rate 4 which are presented in Table 2. It wasn’t possible
to calculate such dynamics for eighth salad sample due to its’ side location relative to the
camera. For the fifth salad sample, the fourth leaf didn’t appear by the 11-th day.

5 Conclusions

We have developed and presented a new method for analysis and prediction of plant growth
dynamics by a combination of modern computer vision and modelling techniques. We de-
signed and assembled an experimental setup which is based on a combination of hydroponic
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and imaging systems; as a result of the study a large collection of salad growth images had
been collected for 31 days with the time frame of 30 minutes. In addition, an annotated
dataset for 11 days growth was obtained under controlled conditions. Our methodology was
tested on the obtained datasets; the results of the tests shown the possibility of making the
detailed reconstruction of dynamics of plant growth. We hope that this pilot study can pro-
vide a background for development of systems for automatic optimisation of plant growth in
artificial conditions.
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