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Conducting plant-related research using deep learning 
has become more and more popular in recent years. Deep 
learning is proving a powerful technique in many areas such 
as segmentation, counting and classification. However, to 
obtain a good deep learning model often requires much 
training data; while acquiring and annotating such data is 
expensive and time consuming. Crowdsourcing is a cheaper 
and faster way to get annotations [1], but these annotations 
can be noisy and unreliable because the expertise of the 
annotators is not guaranteed. Generative Adversarial 
Networks (GANs) [2] are also used for generating synthetic 
training data [3], but successfully training a GAN itself 
needs a lot of data. But maybe we are not using training 
datasets as efficiently as we might. Tuning the training 
approach using active learning is a potentially effective 
method to reduce the costs of training deep models. 

Active learning can be used to select the most 
representative samples and to query information sources 
(e.g. humans and computers) for their annotations [4].A 
typical active learning dataset is formed by a small initial 
training set 𝐷"#$%&, and a relatively large pooling set 𝐷'(() 
at the beginning, as iteratively more samples (i.e. pooled 
samples) are selected from the pooling set and added to the 
training set using the suitable acquisition functions. A 
pooled sample can be indicated as: 

 𝑥' = 	𝑎𝑟𝑔𝑚𝑎𝑥1∈34556𝑎(𝑥,𝑀)	 (1) 

where 𝑥' is the pooled sample, and 𝑎(𝑥,𝑀), the 
acquisition function, is a function of 𝑥 and the learning 
model 𝑀. 

 
Figure 1. Examples of VGG 17 Category Flower Dataset [7] 

In this paper we explore several different acquisition 
functions and evaluate them on a flower image dataset. 
Most of the functions try to acquire the most informative 
samples, including: 
1. Random Selection (RS) 
RS randomly selects new samples from the pool in each 
acquisition iteration. This method is used as a baseline in 
our experiments. 
2. Max Entropy (Max E) 
Max Entropy [5] selects the samples which maximize their 
predictive entropy. The predictive entropy is defined as: 
 

 𝐻(𝑦|𝑥,𝑀) = 	− 𝑝 𝑦 = 𝑐 𝑥,𝑀 log 𝑝(𝑦 = 𝑐|𝑥,𝑀)
D

 (2) 

where 𝑥 ∈ 𝐷'(() , 𝑐  is a given class, and 𝑝 𝑦 𝑥,𝑀  is the 
probability that 𝑥 belongs to class y predicted by model 𝑀. 
3. Max Variation Ratio (Max VR) 
Variation ratio [6] is defined as: 

 𝑉𝑅(𝑥) = 	1 −	max
L
𝑝(𝑦|𝑥,𝑀) (3) 

where 𝑥 ∈ 𝐷'(() . Instead of using predictive entropy, the 
variation ratio takes the highest predictive probability of 
each sample to measure the uncertainty. 
4. Min Standard Deviation (Min SD) 
Min SD selects the samples which minimize the standard 
deviation across their predictive probabilities. This standard 
deviation is defined as: 

 𝑆𝐷(𝑥) = 	
1
𝐶

𝑝 𝑦 = 𝑐 𝑥,𝑀 − 𝑝 𝑦 𝑥,𝑀 O

D

	 (4) 

where 	𝑥 ∈ 𝐷'(() , and 𝑝 𝑦 𝑥,𝑀  is the average predictive 
probability of sample 𝑥. 

A 17-category classification task is performed in our 
experiments using VGG 17 Category Flower Dataset 
(examples are shown in Figure 1) [7], which contains 80 
images in each class (1360 images in total). We divide the 
dataset into 4 parts, including 68 (5%) initial training 
images, 884 (65%) pool images, 204 (15%) validation 
images, and 204 (15%) test images, and all of them are 
class-balanced. 

In the pipeline shown in Figure 2, the deep learning 
models used in our experiments are modified VGG-16 and 
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VGG-19 [8]. The original output layer and the last fully 
connected layer are replaced by a logistic regression layer 
in each model. The ImageNet [9] pretrained weights are 
adopted, so in each model only the added logistic regression 
layer is trained. In each acquisition round, 17 new images 
are moved to the training set from the pooling set, and the 
logistic regression layer is trained on the newly formed 
training samples from scratch. 
 

 
Figure 2. Active learning pipeline: the black arrows and the green 
arrows respectively denote the paths of the training samples and 
pooling samples. 
  
 Figure 3 shows our results after 35 acquisitions using 
different acquisition functions, compared to a baseline 
model without adding any acquisition function. The 
baseline model is trained on 85% of the data and tested on 
the same test set (15%) as used in other models. Our results 
indicate that when using proper acquisition functions, the 
number of training images is reduced by 43% (i.e. from 
1156 to 663 images), while less than 2% of accuracy is 
decreased. Among the acquisition functions, random 
selection is the worst as expected, and Max E, Max VR and 
Min SD perform similarly. 
 Our best results from both models, Min SD in VGG-16 
and Max VR in VGG-19, are compared to [10], where the 
same models (VGG-16/19 + logistic regression) are applied 
to the VGG 17 Category Flower Dataset without acquisition 
functions. The results, as presented in Table 1, again show 
the effectiveness of acquisition functions.  
 In conclusion, our research finds that applying active 
learning techniques can significantly reduce the number of 
training data in deep-learning-based flower classification 
tasks with little cost in accuracy. There is no reason to 
suppose this cannot be further expanded to other 
phenotyping tasks like leaf counting and segmentation 
when they are treated as classification. Given the high price 
and limited availability of good quality training sets, active 
learning should be an approach the phenotyping community 
is aware of. 
 

 

 
Figure 3. Results of VGG-16/19 with different acquisition 
functions: the graphs contrast the training size and performance 
between the baseline (i.e. without adding any acquisition function) 
and models with acquisition functions. Our results are reported in 
mean and standard deviation of rank-1 accuracy and rank-5 
accuracy after 10 repeated experiments. In each graph, the rank-
1/rank-5 percentage accuracies are reported in green/red lines with 
error bars (i.e. standard deviation) along the vertical axis on the 
right, and the numbers of training images are reported in blue bars 
along the vertical axis on the left. 
 

 
Table 1. Best results of our models (in blue background) compared 
to the ones in [10]: to be noticed, the training size and test size in 
[10] are different from ours. 
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