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Figure 1: Typical rhizotron data and results. Left: input image. Middle: automatic labelling result. Right: manually
labelled image. Main roots are green, side root red.

In this contribution we describe a deep neural network
(DNN) solution for labelling of roots according to their root
order, i.e. main or side-root.

A wide range of image-based plant phenotyping methods
for above-ground organs exist, where automated camera-
based methods are abundant [3, 5, 14, 15]. For below-
ground organs like root systems noninvasive measurements
require either growing plants in special ways, like in trans-
parent agar [8], on paper [2] or in hydro- or aeroponics. Or
special 3D imaging equipment is required when grown in
soil, e.g. magnetic resonance imaging (MRI) [12], positron
emission tomography (PET) [4], or computed tomography
(CT) [7]. Simple camera-based imaging of root systems in
soil can be achieved, when using special flat pots, so-called
rhizotrons [9], where one side is made from transparent ma-
terial. During plant growth they are inclined such that roots
grow along the transparent window. In contrast to other
above mentioned root system imaging setups where the full
root system is visible, rhizotron imagery shows only frag-
ments of the root system, as roots growing along the window
vanish into the opaque soil from time to time. Well estab-
lished root image analysis solutions (like e.g. [6, 13]) are
designed to reconstruct complete root graphs, thus not be-
ing suitable in this application scenario. Due to this lack of
fully automated, high quality solutions state-of-the-art anal-
ysis still involves some human post-processing or labelling.

Human generated labels are 1 pixel wide lines indicat-
ing where roots are, i.e. labelled root skeletons, rather than
segmentations. Drawing precision is in the range of few pix-

els, therefore skeletons are not always reliably centered on
roots, introducing some position noise in the labels. Having
such hand-labelled data available, enables us to investigate
different DNN architectures for root labelling. Biologically
relevant root system parameters like branching angles or -
frequencies, root densities etc. are then derived in a subse-
quent step.

We investigate two different DNN architectures. The first
one is a modification of the four-fold hourglass introduced
by [10] and established for plant phenotyping applications
like grain, ear or ear tip detection [11]. This network is de-
signed for heat-map generation, indicating where sough for
objects are in an image. There, training is performed us-
ing mean square error as loss. Here, we appended softmax
layers at each layer used for loss calculation, such that pixel-
wise classification can be learned using categorical cross en-
tropy. The network was trained end-to-end, from scratch,
using RMSProp with batch size 50, 100 epochs and learning
rate 2.5 ·10−4 as in [11]. As image data is typically 15Mpix,
we employed tiling such that outputs are 64× 64 as in [11]
in order to make the network trainable on a single Nvidia
1080Ti GPU with 11GB memory. The resulting network
has 25M parameters.

Results using the four-fold hourglass architecture are
shown in Figure 1. The general root system properties are
already very well captured. However, there is still room for
improvement, compare e.g. the topmost main roots not be-
ing completely captured by the DNN.

In order to enlarge spatial reach, in an ongoing project,
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we currently investigate a DNN architecture introduced for
fast image processing [1] using dilated convolutions [16].
Using the same GPU for training, the smaller size of the net-
work allows for larger tiles, 320× 320 in our case. Prelim-
inary results are comparable to the ones shown in Figure 1,
while the network has only in the order of 100k parameters.
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