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Effective weed control using herbicides relies on knowledge
about which weeds are present in a field. This knowledge can
be obtained automatically by analyzing images collected in the
field. Image processing has previously been proposed as a way
to solve the task of classifying weeds, [3, 6, 5, 1]. But han-
dling weeds that cannot be be fully annotated remain an un-
solved task, since supervised machine-learning methods require
annotated data. These weeds are typically small and have not
fully developed their visual characteristics. Such samples have
previously been left out whereby the classifier performance does
not reflect the performance in real-world applications.

However, it might be possible to describe plats at a higher
taxonomic level and thereby train them supervised. E.g. ’grass”
rather than black-grass or “dicot” rather than knotweed”. With
that in mind, we need a hierarchiucal multi-label classifier that
can be trained on weeds that are only partly annotated. More-
over, a hierarchical classifier is desirable, as when classifying
hard samples we would rather have a correct classification at
a higher hierarchical level than a wrong classification at the
species level. Here we present a convolutional neural network
with a hierarchical output structure. This structure makes it
possible to train the network using plant images that are not
fully annotated and which we would normally have missed if we
would only classify at the species level. Likewise, the classifier
provides hierarchical outputs for each sample, which allows one
to weight a detailed classification at the species level against a
higher accuracy accuracy at the family-level or monocot/dicot-
level.

Data material The data material consists of RGB images of
weeds at early growth stages, collected in 225 Danish fields
through five growing seasons using cellphone cameras, con-
sumer cameras or machine-vision cameras. All images are taken
vertically towards the ground with a ground sampling distance
of 3 to 8 px/mm, which ensures that weeds smaller than a cen-
timetre can still be seen. All plants are at early growth stages,
typically between BBCH 11 and BBCH 19 [4]. Eight random
samples are shown in Figure 2. A total of 90 697 plant images
are used for training and 22 564 images are used for testing.

Although the goal is to classify the species of weeds, there
are many weed samples for which it is not possible to annotate
the species precisely. To facilitate a hierarchical classification of
weeds, the weeds in this study are annotated at one of three lev-
els: monocot/dicot-level, which is above the family-level, which
is above the species-level (Figure 1). Thereby a plant will have
one to three annotations: One if annotated at the monocot/dicot-
level, two if annotated at family-level, and three if annotated at
a species level.

The weeds belong to 38 species, which belong to 18 families,
which are either monocots or dicots. The data set is likely to
contain even more species and families, but since they are not
annotated, the total number is unknown.
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Figure 1: Hierarchical structure of labels. Blue nodes indicate
decision nodes/loss nodes, while green nodes are output nodes.

monocot/dicot family species
# of classes 2 18 38
# of fields 225 190 180
# of samples 90697 43293 38423

Table 1: Summary of hierarchical labelling of training data.

Hierarchical classification The neural network is made up of
two parts: A backbone network, which is used as a feature ex-
tractor, and a hierarchical classifier. The backbone consists of a
standard ResNet50 network [2]. The classifier part is made dy-
namically from the training data; one output layer for each split
in the hierarchy resulting in a total of 21 classifier layers — all
connected to the backbone to enable rich feature maps. The hi-
erarchical structure is ignored during training to avoid errors at
higher hierarchical levels to influence the lower levels. The fam-
ily level and species level can thereby be trained even though the
monocot/dicot-level has not yet settled and therefore outputs the
wrong predictions. All samples have one to three annotations,
and are therefore only members of up to three of the 21 classifier
layers. Therefore, those classifier layers (those coloured blue in
Figure 1) to which these annotations belong are activated for a
specific sample. All others are deactivated. The structure of the
network and the loss aggregation renders possible training with
mini-batches of mixed degree of annotation.

Evaluation Since not all paths in the hierarchy have the same
numbers of decisions, the results will be skewed towards the
branches with the fewest possibilities. Therefore, a path in the
tree is chosen based on the the maximum output score of a given
classifier layer.

Results and discussion The overall accuracies are found in
Table 2, which shows that the accuracy is highest at the mono-
cot/dicot discrimination level, while it is lowest at the species
discrimination level.

When comparing the accuracies for plants that are fully an-
notated with those that are only annotated at the monocot/dicot-
level or family level, there is a tendency that plants that can be
annotated at species level are easier predictable at all hierarchi-



(a) 40% scale (b) 500% scale (¢) 20% scale

(f) 100% scale

(d) 300% scale

(e) 100% scale

Figure 2: Randomly selected samples. Please notice the variation in both scaling and occlusion. The annotations are as followed:

a) FUMOF, b—d) PPDDD, e) STEME, f) VIOAR.
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Figure 3: Confusion matrix for images annotated at the species-level. Cell colours illustrate the accuracy, while numbers indicate
the number of samples. The tree at the axis indicate the hierarchical relationship

monocot/dicot family species
Accuracy 0.956 0.894 0.877
Accuracy (annotated at species level) 0.992  0.899 0.877
Single classifier accuracy 0.956  0.902 0.971

Table 2: The accuracies at the three hierarchical levels. The ac-
curacy at mono/dicot-level increases slightly when only consid-
ering fully-annotated samples, compared to all samples. When
classifiers are evaluated independently, assuming the levels
above are classified correctly, the accuracies increase to more
than 90% for all hierarchical levels.

cal levels than plants, which are only partly annotated.

This is believed to be state-of-the-art when considering that
the accuracy is comparable with the study by Dyrmannl[1],
while we have more than twice the number of samples and weed
species.

The confusion matrices at species levels is shown in Figure 3.
Interestingly, there is very little confusion within each fam-
ily. Only in the knotweed-family (1POLF) and between grasses
(1GRAF) there seem to be little confusion. Grasses are, how-
ever, rarely confused with any dicots at the species level, which
is clear from Figure 3 and Table 2.

Conclusion A mix of partially annotated samples can be used
simultaneously for training the classifier, which becomes able to
classify weeds at three hierarchical levels; monocot/dicot, fam-
ily, and species. Given the hierarchical structure, it is possible to
utilize images that are only partly annotated. Moreover, the hier-
archical structure renders possible classification at a higher hier-
archical level, with increased accuracy as a result. The training
data contains 18 annotated weed families and 38 weed species,
which is believed to be state-of-art in terms of the number of
weed species in an automated classification. The ability to dis-
tinguish weeds with this accuracy provides the basis for big po-
tential savings regarding herbicide consumption in agriculture.

This renders possible training a classifier using all images of
weeds, and not only the ones that can be annotated as a spe-
cific species. The method is trained and evaluated on more than
100000 images that span 18 families and 38 species with accu-
racies ranging from 87% at the species level, up to 95.6% when
discriminating monocots from dicots at the highest hierarchical
level.
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