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Abstract

Segmentation of 3D plant models is an important task in plant phenotyping and has
been a great challenge in recent years. Segmenting plants into organs, such as leaves,
stems and nodes can help us get plant-phenotypical data. Recently, deep learning has
shown unparalleled results in semantic segmentation. In this work, we address the prob-
lem of using fully convolutional neural network (FCN) for semantic segmentation of 3D
tomato-seedling models separating leaves, stems, and nodes. We approach the problem
by performing semantic segmentation on multiple 2D images from different viewpoints
and combining them into the 3D seedling models using the camera-projection matrices.
We evaluate the precision and recall of our methods with ground truth labels obtained by
hand. Results show that our method is very promising.

1 Introduction
Recently, applying deep learning in plant segmentation is gaining attention among researchers.
In agriculture, deep learning is used in areas of weed identification, plant recognition, and
fruit counting[3]. Fully convolutional neural network (FCN) is a pioneering field of research
which can address the semantic image segmentation problem in pixel-level[8]. Segmentation
of 3D models, which provides more objects information than 2D images, has been shown to
be effective for vision applications. Algorithms of 3D segmentation using deeping learning
fall into three groups. First, voxel-based methods[2, 4, 5, 7, 10, 13, 16] use voxelization
of the 3D objects to create 3D tensors to feed a 3D convolutional neural network. Second,
point-based methods[11, 12] take unordered point cloud as input and use network with fully-
connected and pooling layers. Last, multi-view methods[1, 14, 15] apply neural networks
to multiple generated 2D tensors of the point clouds and use CNN to back-project the label
predictions to the 3D space. In this work, we present a semantic segmentation on multiple
2D images from different viewpoints and combine results into the 3D seedling model using
the camera-projection matrices.
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2 Materials and Methods
The main goal of our work is to segment a 3D point cloud seedling into leaves, stems and
nodes in pixel-wise level and in an end-to-end way. Our segmentation pipeline is separated in
three main steps: First, grey-scale 1280x960 images from MARVIN system[6] were manu-
ally annotated into four classes: background, leaf, stem and nodes. All images were cropped
and resized into 640x400 pixel resolution. For the training and validation dataset, 270 im-
ages (87%) and 40 images (13%) were used, respectively. Second, a pretrained (PASCAL
VOC) FCN-VGG16-8s model[9] was employed to provide a per-pixel semantic labeling of
the input data. Last, based on the labeling, we used camera-projection matrices to project
2D pixel labels to 3D models. To evaluate the performance of the network, IoU, precision
and recall for each class and average IoU (mIoU) for all classes were calculated.

3 Results and Conclusion
Based on the evaluation metrics, the performance of segmenting background, leaf and stem
in 2D images was better than nodes (Table 1 and Figure 1). We will show the results of
projecting the segmentation of multiple camera viewpoints to a 3D model in poster section.

Table 1: Results of semantic segmentation on 2D images

mIoU(%) IoU(%) Precision (%) Recall(%)
Background Leaf Stem Node Background Leaf Stem Node Background Leaf Stem Node

60.48 99.91 68.75 49.29 23.97 100.00 69.99 51.57 37.64 99.92 97.48 91.80 39.75

Figure 1: Input, annotated images, and predicted images of a seedling in ten pointviews.Red
represents leaf, green represents stem and blue represents node
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