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Measuring plant geometry from single view-point 2D
images often suffers from insufficient information, espe-
cially when plant parts occlude each other (self-occlusion).
In order to receive more detailed information and recover
the plants 3D geometric structure volume carving is a well
established method to generate 3D point clouds of plant
shoots [6, 3, 2, 7], seeds [12, 13, 4], and roots [1, 17, 14].
Volume carving can be applied in high-throughput scenarios
[3]: For the reconstruction of relatively simple plant struc-
tures like tomato seedlings image reconstruction takes ap-
prox. 25-60ms, based on a well though out camera geom-
etry using 10 cameras and a suitably low voxel resolution
240×240×300 voxels at 0.25 mm/voxel. Short reconstruc-
tion times are achieved by precomputing voxel to pixel pro-
jections for each of the fully calibrated cameras. However,
precomputing lookup-tables is not feasible for high voxel
resolutions due to storage restrictions [8]. Current imple-
mentations popular in plant sciences suffer from high com-
putational complexity, when voxel resolutions are high. We
therefore implemented and tested a fast and reliable volume
carving algorithm based on octrees (cmp. [6]) and integral
images (cmp. [15]). This work summarizes and extends our
findings presented in [2].

Visual hull reconstruction via volume carving is a well-
known shape-from-silhouette technique [10, 11, 9] and
found many applications. Also octree as multigrid approach
and integral image for reliable and fast forground testing
have been used successfully with volume carving in med-
ical applications [8] and human pose reconstruction [5].
Realtime applications at 5123 voxel resolution have been
achieved where suitable caching strategies on GPUs can be
applied e.g. for video conferencing [16]. Here we show how
even higher spatial resolutions are achievable on consumer
computer hardware without prohibitively large computa-
tional or storage cost. Subsequent octree-voxel-based pro-
cessing allows extraction of plant structural features suit-
able for phenotyping purposes.

Our main finding is that clearly the combination of oc-
trees and integral images speeds up processing especially
at very high resolutions compared with non-adaptive brute
force implementations. However, multiresolution can only

Figure 1. Imaging. Left: Camera setup in measurement chamber.
Three 5MPRGB cameras (red circles) with different view angles
and rotating table (green circle). Right, top: Original RGB im-
ages taken from 3 different view angles; middle: Binary masked
images; bottom: Intermediate carving step overlaid on images.

be fully effective, when applied using a suitable refinement
strategy. Neither naı̈ve breadth first nor depth first refine-
ment strategies lead to significant speedup. Looping all
images and marking octree candidate nodes for refinement,
followed by a refinement step only when all candidates are
marked is the key for speedup. We observed a speed up of
up to a factor of 35 between these strategies, where CPU
parallelization (8 cores) yields another factor of 3.

In Figure 1 the imaging setup for our experiments is de-
scribed. The imaged working volume is about (50cm)3 and
we chose this as reconstruction volume. In contrast to re-
construction methods using uniform grids, using larger re-
construction sizes with multiresolution grids like octrees,
does not result in (significantly) higher computation times
or storage needs.

In Figure 2 a result is shown for a Banana seedling of
30cm height and width, reconstructed at finest voxel size
of 0.12mm. A uniform voxel grid of this resolution would
have 4096 × 4096 × 4096, i.e. 6.9 · 1010 voxel and could
not even be stored in the available 8GB RAM of the com-
puter used here, let alone carved in reasonable time. For
comparison: In [13] a runtime of 12.5s is reported using a
well optimized GPU implementation for reconstruction of
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Figure 2. Reconstruction of a Banana seedling.

a uniform 10243 grid from 36 images (1000 × 1000 ROI).
Scaling this up linearly (ignoring additional communication
overhead that would be needed), this results in 800s to re-
construct a 40963 grid. Reconstruction time with the pro-
posed method using 9 images with 5Mpix , i.e. more pix-
els overall, was 48s on a laptop (Intel i5 CPU, 8GB RAM)
without using any parallelization, and resulted in 3.7 · 106
octree nodes.

We conclude, that the proposed method allows visual
hull reconstruction at very high resolutions, even on current
standard laptop hardware.
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