EasyRFP: An Easy to Use Edge Computing
Toolkit for Real-Time Field Phenotyping

Sai Vikas Desaif!, Akshay L Chandraf!,

Masayuki Hirafuji?, Seishi Ninomiya?,

Vineeth N Balasubramanian!, and Wei Guo?

! Indian Institute of Technology Hyderabad
{cs17mtech11011, akshaychandra, vineethnb}@iith.ac.in
2 The University of Tokyo, Japan
{hirafuji, snino, guowei}@g.ecc.u-tokyo.ac.jp

Recent advances in deep learning have
catalyzed rapid progress in high through-
put field phenotyping. Much research
has been dedicated towards developing
accurate and cost effective deep learn-
ing models to capture phenotyping traits
such as plant stress, yield and plant
growth stages. However, there is a short-
age of software tools to promote the us-
age of such intelligent methods among
plant phenotyping practitioners and re-
searchers. To bridge this gap, we devel-
oped EasyRFP [1], a Flask back-end,
Angular font-end software toolkit which
can be interfaced with any commercial
GPU enabled micro computer (such as
NVIDIA Jetson) and a digital camera.

With camera and control box setup in
an appropriate position in the field as
shown in Fig. 1, our tool can be used in
two modes: (i) Real-Time mode: Cap-
ture images and process them in real-
time to obtain phenotypic traits, and
(ii) Scheduler mode: schedule the sys-
tem to capture images at fixed time
intervals and notify the user with the
results obtained by the deep learning
model. Real-Time mode is well-suited
for situations where instantaneous and
on-demand observation of crop is de-
sirable. Fig. 2(a) shows the workflow

tEqual Contribution

Control Box

Fig. 1. A typical on-field setup looks as
shown above (top). The control box hard-
ware configuration is shown at the bottom.

of real-time mode. The user only have
to configure the real-time mode param-
eters - task, recipient email(s) in the
UI before starting the process. Sched-
uler mode is suitable for periodical in-
spection of crops at fixed intervals. In
this mode, the toolkit runs a long pro-
cess in the background. Fig. 2(b) shows
the workflow of scheduler mode. Here,
along with the task, the user is expected
to configure the scheduler time param-
eters - capture interval, notification in-
terval, total time of the process. For in-
stance, the tool can be configured to
run a long process, say for 48 hours



2 Desai et al.

while capturing and processing camera
input every 1 hour and send the logs via
email every 12 hours. Details of where
the user can access the results (log files
and images captured) outside the Ul
can be seen both on the logs section in
UI and in the email. To achieve this, we
wrapped the scheduling and the real-
time code in Python’s Flask framework
(back-end) and then we established a
web socket connection to periodically
send updates of the progress and re-
sults to the front-end. We chose Angu-
lar 7 as the front-end framework, which
actively listens to the the web socket
messages as and when sent from Flask.

Task specific DL Save, Display
> Model predicts ——>| and Send
output Results

Configure Task,
Email

Press Capture to
obtain the image.

(a)

1. Camera captures image.
2. Image is passed through
task specific Deep
Network, outputs are

When saved locally.
Configure Task. | ggay process

Email. Capture & |~ clicped
Notification ——————
Intervals &

Total Time

‘When
Total Time
Elapses

When Capture

Interval Elapses Terminate

Scheduler
L. Results obtained until Process

now are collated.

2. User is notified via
email.
When Notification
Interval Elapses

(b)

Fig.2. Workflow of (a) Real-Time
Mode (b) Scheduler Mode

Our toolkit can be seen as a wrapper as
it can work with any pre-trained model,
provided that its learning framework

(ex: Tensorflow, PyTorch, ONNX) is sup-

ported by the underlying embedded Al
device (NVIDIA Jetson NX). It allows
for users to seamlessly add tasks and
use their trained models on custom plant
phenotyping datasets of their choice.
For a custom trained model, users can
copy the model to the tasks/models di-
rectory inside the toolkit’s root direc-

tory. The user is expected to place a
python file, say task_name.py, with a
class that particularly implements the
method perform_task(). The class con-
structor should take an image as input
and this method is expected to out-
put specific things for specific tasks.
If it is a classification task, the func-
tion should return a tuple with the pre-
dicted class name and the predicted prob-
ability (class name, pred_prob). If it is
a detection task, the function must re-
turn a list of tuples, where each tu-
ple looks as follows: (class-name, [z, y,
width, height]). Each tuple corresponds
to a single predicted bounding box, con-
sisting of the class name and the bound-
ing box information. Our code currently

supports classification and detection tasks

but can extend to any task provided
the output format is appropriately han-
dled for logs in api/utils.py.

We refer the readers to our code repos-
itory for code examples, demos, execu-
tion details and also for a detailed tu-
torial on how to integrate new tasks [1].
In the future, we hope to make the tool
work on lighter embedding devices such
as Raspberry Pi or Arduino UNO, per-
haps by limiting the device activity to
capturing images and moving the infer-
ence and reporting (logging and email-
ing) modules entirely to a cloud based
server.

References

1. Sai Vikas Desai, Akshay L Chan-
dra, M.H.S.N.V.N.B.W.G.: Easyrfp:
An easy to use edge computing
toolkit for real-time field phenotyp-
ing. https://github.com/lab1055/easy-
rfp (2020)



