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Pollen counts are an important mea-
sure for biologists working in plant phe-
notyping and assist in understanding
a plant’s ability to tolerate stresses re-
sulting from different growing conditions.
Accurately assessing pollen can prove
challenging within high-throughput ex-
periments [2]. Current pollen counting
methods include: manual counting, im-
age analysis software [1], & impedance
flow cytometry [4]. However, these meth-
ods are cumbersome, don’t provide via-
bility (e.g. fertile vs. sterile pollen grains)
counts, and are costly to implement, re-
spectively.

In this paper we propose a deep neu-
ral network capable of generating via-
bility counts of pollen grains in micro-
scopic images. The principal challenge
in producing accurate viability counts
lies in the variability of the dataset,
which comprises pollen grain images of
cultivars of multiple species subjected
to differing heat stress treatments and
stained using different techniques. In
addition, the quality of images is vari-
able, with differing levels of lighting,
magnification, resolution, compression,
background noise, foreign objects, par-
tial occlusion and clutter. Figure 1 shows
training set samples that illustrates the
kinds of variability encountered.

Building on previous work analysing
wheat spikes and spikelets [6], a stacked
hour-glass architecture [5] was imple-
mented, allowing segmentation of input
images into 3 channels and providing
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Fig. 1: Image samples from training set.

a mechanism to generate fertile, sterile
and total pollen grain counts.

The model was trained on 130 an-
notated microscopic images, including
samples from both Rice (Figs. 1a-1f)
and Arabidopsis plants (Figs. 1g-1i) cul-
tivated under a variety of growing con-
ditions, and stained with either Potas-
sium Iodide (Figs. 1a-1h) or Fluores-
cein Diacetate (FDA) (Figure 1i). Data
samples typically contain both fertile
and sterile grains and annotation files
provide co-ordinate sets for each type.

Due to hardware limitations, it is
not feasible to process whole images at
full size. Downsampling the image re-
sults in loss of detail due to the small
size of pollen grains. Therefore, a ran-
dom cropping approach was used, pro-
cessing a portion of each image per sam-
ple. This maintains context within the
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image and allows images to be reused
multiple times within the training pro-
cess. Data augmentation techniques such
as randomised jitter, scaling and rota-
tion were also used. Training was run
over 100 epochs with each image sam-
pled 10 times per epoch. RMSProp was
used for network optimisation and MSE
for the loss function.

Individual F1 scores per channel were
used for evaluating performance. At the
100th epoch, channel accuracy scores
of 0.894, 0.737 and 0.881 were achieved
for Fertile, Sterile and All, respectively.
Three primary modes of failure were
identified resulting in a reduction in ac-
curacy. Grain types were sometimes mis-
classified where visible differences be-
tween sterile and fertile grains appeared
to be extremely subtle. Incorrect iden-
tification of similarly shaped foreign ob-
jects triggered some false positives. Fi-
nally, in heavily clustered areas some
grain predictions were lost, possibly due
to the threshold value and neighbour-
ing grains. The lower score in the sterile
channel is believed to be due to unbal-
anced class distribution between grain
types across image samples. Future work
could implement selective cropping to
create balanced distributions. Whilst the
third channel containing all pollen grains
didn’t provide improvement upon the
fertile and sterile channels, it was seen
to assist with training, marginally in-
creasing accuracy and reducing volatil-
ity compared to experiments without.

As with training, hardware limita-
tions prevent inferring complete images
in a single pass. Therefore, the infer-
ence method used in [6] was extended
to introduce a sliding window approach,
cropping tiles from the image, process-
ing them individually and then stitch-
ing them back into a full image. To en-

Fig. 2: Inference predicted 1195 yellow
and 71 red masks representing fertile
and sterile pollen grains respectively.

sure overlapping pollen grains residing
at the edges of adjoining tiles are not
double-counted, an R-tree structure [3]
was used to store detected grain loca-
tions. New grains are checked for exist-
ing representation using a pre-defined
distance threshold prior to being added
to the tree.

The inference process produced counts
in the region of 8-90 seconds (depen-
dant on input image size) running on
a 2.3 GHz 8-Core Intel Core i9 CPU.
This is much improved on manual counts
(5–68min [2]), and although marginally
slower than [1], our method requires no
pre-processing, provides viability counts
and generates output images (Figure 2)
aiding human verification.

While the model does not perform
perfectly in all conditions, we believe
it is sufficiently accurate to be useful
to biologists, allowing rapid approxi-
mation of viability counts without re-
quiring specialist equipment or complex
pipelines. Manual annotation of pollen
grain images to create training data is
laborious and prone to error and it is
anticipated that future work will use
active learning to improve performance.
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