If you use this dataset in your research, it is mandatory to cite the following:

  1. M. Minervini, A. Fischbach, H.Scharr, and S.A. Tsaftaris. Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recognition Letters, pages 1-10, 2015, doi:10.1016/j.patrec.2015.10.013 [PDF] [BibTex]
  2. and to reference our website [BibTex]

There are several papers having used parts of this or similar data, which you might find useful and may of course cite in addition:

H. Scharr, M. Minervini, A.P. French, C. Klukas, D. Kramer, Xiaoming Liu, I. Luengo Muntion, J.-M. Pape, G. Polder, D. Vukadinovic, Xi Yin, and S.A. Tsaftaris. Leaf segmentation in plant phenotyping: A collation study. Machine Vision and Applications, pages 1-18, 2015, doi:10.1007/s00138-015-0737-3.

B. Dellen, H. Scharr, and C. Torras. Growth signatures of rosette plants from time-lapse video. IEEE/ACM Transactions on Computational Biology and Bioinformatics, PP(99):1 - 11, 2015, doi:10.1109/TCBB.2015.2404810

E.E. Aksoy, A. Abramov, F. Worgotter, H. Scharr, A. Fischbach, and B. Dellen. Modeling leaf growth of rosette plants using infrared stereo image sequences. Computers and Electronics in Agriculture, 110:78 - 90, 2015, doi:10.1016/j.compag.2014.10.020

M. Minervini , M.M. Abdelsamea, S.A. Tsaftaris. Image-based plant phenotyping with incremental learning and active contours. Ecological Informatics 23, 35–48, 2014, doi:10.1016/j.ecoinf.2013.07.004

Sponsored by




Phidas logo

Some example images from data set